

TSIRCON CO LTD

MANUFACTURERS & TRADERS OF BUILDING MATERIALS

TSIRCO-RES 341G

Product Information

Certified to NSF/ANSI 61 by **IAPMO R&T** (file N-7858)

Description

TSIRCO-RES 341G is a two-component 1:1 ratio pure epoxy bonded anchoring system for use in cracked and uncracked concrete under normal as well as seismic conditions (seismic category C1). Designed for most demanding structural applications and rebar connections, TSIRCO-RES 341G offers a very high load-bearing capacity.

concrete

connections

rule 1168 (2005)

ETA according to TR023 for post-installed rebar

Tested according to LEED 2009 EQ c4.1, SCAQMD

Certified to NSF/ANSI-61 for contact with potable water Fire resistance F240 for reinforcing bars

Cartridges should be stored in their original packaging, the correct way up and in cool dry conditions (+10°C to +25°C) out of direct sunlight. When stored correctly, the shelf life will be for 24 months from the date of manufacture.

Health & Safety

For health and safety information please refer to the relevant Safety Data Sheet.

Base Materials Features Accessories Uses/Applications Cracked concrete Fixings close to free edges **Applicators** Structural applications in cracked and uncracked Uncracked concrete Fire tested Mixing nozzles concrete applications in Hard natural stone Versatile Air lance seismic zones (C1) Solid rock Anchoring without expansion Cleaning brushes Facades pressure Solid masonry High flow mixing Post installed rebar High load capacities nozzles connections **Approvals & Tests** Available in side-by-side Extension tubes Crash barriers cartridges (400, 600, 1500ml) ETA according ETAG 001 Resin stoppers Structural steel and UVL cartridges (250ml) Part 1 & 5 Option 1 for anchoring of threaded bars Component volume ratio of 1:1 into cracked & uncracked · Extended gel/open time

Product Data Sheet

Contents

7

7

8

1 Product Information

- Description 1
- 1 - Health & Safety
- 1 - Base Materials
- 1 - Features
- 1 -Accessories
- Uses/Applications
- -Approvals & Tests 1
- -TSIRCO-RES 341G Working & Loading 3
- 3 Times - Physical Properties
- 4 - Chemical Resistance
- 5 - Solid Substrate Installation Method
- 6 - Installation Parameters

7 Steel Failure Information - Threaded Bars

- Characteristic resistance values to tension load

7 **Steel Failure Information - Reinforcing Bars**

- Characteristic resistance values to tension load

Using TSIRCO-RES 341G with Threaded Bars

- -Combined pullout and concrete cone failure in uncracked concrete C20/25
- 8 -Tension load calculations for combined concrete cone & pullout failure at various embedment depths
- Combined pullout and concrete cone failure in cracked concrete C20/25 12
- -Tension load calculations for combined concrete cone & pullout failure at various embedment depths 13

Using TSIRCO-RES 341G with Reinforcing Bars 17

- 18 -Combined pullout and concrete cone failure in uncracked concrete C20/25
- 18 -Tension load calculations for combined concrete cone & pullout failure at various embedment depths
- Combined pullout and concrete cone failure in cracked concrete C20/25 22
- 23 -Tension load calculations for combined concrete cone & pullout failure at various embedment depths

27 Using TSIRCO-RES 341G with Post-installed rebar connections

28 **Important Notes**

Product Data Sheet

TSIRCO-RES 341G Working & Loading Times

Resin cartridge Temperature	T Work	Base Material Temperature	T Load
+10 to +15°C	20 mins	+5 to +10°C	24 hrs
+10 t0 +15 C	20 mins	+10 to +15°C	12 hrs
+15 to +20°C	15 mins	+15 to +20°C	8 hrs
+20 to +25°C	11 mins	+20 to +25°C	7 hrs
+25 to +30°C	8 mins	+25 to +30°C	6 hrs
+30 to +35°C	6 mins	+30 to +35°C	5 hrs
+35 to +40°C	4 mins	+35 to +40°C	4 hrs
+40°C	3 mins	+40°C	3 hrs
	Prior use ensure cartrid	ge temperature is > 10°C	

Note: T Work is typical gel time at highest base material temperature in the range. T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

Physical Properties

Property		Unit	Value	Test Standard
Density		g/cm ³	1.5	ASTM D 1875 @ +20°C / +72°F
Compressive Strength	24 hours	N/mm²	75	ASTM D 695 @ +20°C / +72°F
Compressive Strength	7 days	N/mm²	95	ASTIM D 695 @ +20 C7+72 F
Tanaila Strangth	24 hours	N/mm²	18	ASTM D 638 @ +20°C / +72°F
Tensile Strength	7 days	N/mm²	23	ASTM D 636 @ +20 C7 +72 F
Clangation at Brook	24 hours	%	6.6	ASTM D 638 @ +20°C / +72°F
Elongation at Break	7 days	70	5.9	ASTM D 636 @ +20 C7 +72 F
Tensile Modulus	24 hours	GN/m²	5.7	ASTM D 638 @ +20°C / +72°F
rensile Modulus	7 days	GN/m²	5.5	ASTM D 636 @ +20 C7 +72 F
Flexural Strength	24 hours	N/mm²	45	ASTM D 790 @ +20°C / +72°F
HDT	7 days	°C	49	ASTM D 648 @ +20°C / +72°F
VOC		g/L	4.5	ASTM D 2369

Product Data Sheet

Chemical Resistance

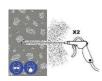
The chemical mortar has undergone extensive chemical resistance testing. The results are summarised in the table below.

Concentration	Result
10%	С
100%	×
Saturated	✓
10%	✓
5%	✓
100%	С
100%	С
Saturated	✓
100%	×
5 - 15%	✓
100%	С
Saturated	✓
Gas	✓
100%	С
Saturated	×
100%	×
Saturated	✓
100%	✓
100%	С
100%	✓
95%	×
20%	С
100%	С
	10% 100% Saturated 10% 5% 100% 100% Saturated 100% Saturated 100% Saturated Gas 100% Saturated

Chemical Environment	Concentration	Result
Hexane	100%	С
	10%	✓
Hydrochloric Acid	15%	✓
	25%	С
Hydrogen Sulphide Gas	100%	✓
Isoproyl Alcohol	100%	×
Linseed Oil	100%	✓
Lubricating Oil	100%	✓
Mineral Oil	100%	✓
Paraffin / Kerosene (Domestic)	100%	С
Phenol Aqueous Solution	1%	С
Phosphoric Acid	50%	✓
Potassium Hydroxide	10% / pH13	✓
Sea Water	100%	С
Styrene	100%	С
Sulphur Dioxide Solution	10%	✓
Sulphur Dioxide (40°C)	5%	✓
Sulphuria Aaid	10%	✓
Sulphuric Acid	50%	✓
Turpentine	100%	С
White Spirit	100%	✓
Xylene	100%	С

^{✓ =} Resistant to 75°C with at least 80% of physical properties retained.

C = Contact only to a maximum of 25°C.


[■] Not Resistant

Product Data Sheet

Solid Substrate Installation Method

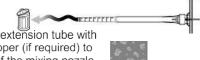
Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool – either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

- 1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 6bar.

Perform the blowing operation twice.

Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

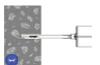
extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.


Perform the brushing operation twice.

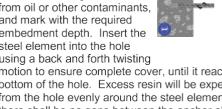
- Repeat 2
- Repeat 3
- 6. Repeat 2
- Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

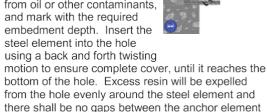
Note: The QH nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two sections firmly together until a positive engagement is felt.

8. Extrude some resin to waste until an even-colored mixture is extruded. The cartridge is now ready for use



9. Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit


(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).


10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the

11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required

nozzle from the hole.

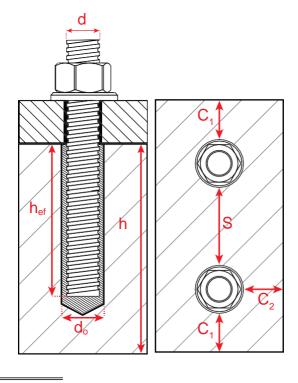
- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

and the wall of the drilled hole.

14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

Product Data Sheet



Installation parameters Threaded rods

Size		•	M10	M12	M16	M20	M24	M30
Nominal drill hole diameter	$Ød_0$	[mm]	12	14	18	22	26	35
Diameter of cleaning brush	d _b	[mm]	S14H/F	S16H/F	S22H/F	S24H/F	S31H/F	S38H/F
Torque moment	T _{inst}	[Nm]	20	40	80	135	200	270
Min. embedment depth								
Depth of drill hole	h ₀	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef}	[mm]	60	70	80	90	96	120
Minimum edge distance	C _{min}	[mm]	40	40	45	50	55	65
Minimum spacing	S _{min}	[mm]	40	40	45	50	55	65
Minimum thickness of member	h _{min}	[mm]	100	100	115	130	160	200
Max. embedment depth			•	•			•	•
Depth of drill hole	h ₀	[mm]	200	240	320	400	480	600
Effective anchorage depth	h _{ef}	[mm]	200	240	320	400	480	600
Minimum edge distance	C _{min}	[mm]	40	40	45	50	55	65
Minimum spacing	S _{min}	[mm]	40	40	45	50	55	65
Minimum thickness of member	h _{min}	[mm]	224	268	336	444	532	670

Reinforcing bars

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	$Ød_0$	[mm]	14	16	20	25	32	40
Diameter of cleaning brush	d _b	[mm]	S16H/F	S18H/F	S22H/F	S27H/F	S35H/F	S43H/F
Torque moment	T _{inst}	[Nm]	20	40	80	135	200	270
Min. embedment depth			•	•				
Depth of drill hole	h _o	[mm]	60	70	80	90	100	128
Effective anchorage depth	h _{ef}	[mm]	60	70	80	90	100	128
Minimum edge distance	C _{min}	[mm]	40	40	45	50	55	65
Minimum spacing	S _{min}	[mm]	40	40	45	50	55	65
Minimum thickness of member	h _{min}	[mm]	100	100	120	140	164	208
Max. embedment depth								
Depth of drill hole	h _o	[mm]	200	240	320	400	500	640
Effective anchorage depth	h _{ef}	[mm]	200	240	320	400	500	640
Minimum edge distance	C _{min}	[mm]	40	40	45	50	55	65
Minimum spacing	S _{min}	[mm]	40	40	45	50	55	65
Minimum thickness of member	h _{min}	[mm]	228	272	360	450	564	720

Product Data Sheet

Steel Failure Information - Threaded Bars Characteristic resistance values to tension load

Steel Failure - Characteristic resistance								
Size			M10	M12	M16	M20	M24	M30
Steel grade 5.8	N _{Rk,s}	[kN]	29	42	79	123	177	281
Partial safety factor	γ _{Ms}	[-]			1.	.5		
Steel grade 8.8	$N_{Rk,s}$	[kN]	46	67	126	196	282	449
Partial safety factor	γ_{Ms}	[-]	1.5					
Steel grade 10.9*	N _{Rk,s}	[kN]	58	84	157	245	353	561
Partial safety factor	γ _{Ms}	[-]			1.	.4		
Stainless steel grade A4-70	$N_{Rk,s}$	[kN]	41	59	110	172	247	393
Partial safety factor	γ _{Ms}	[-]			1.	.9		
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	46	67	126	196	282	449
Partial safety factor	γ_{Ms}	[-]	1.6					
Stainless steel grade 1,4529	$N_{Rk,s}$	[kN]	41	59	110	172	247	393
Partial safety factor	γ _{Ms}	[-]			1.	.5		

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure.

Steel Failure Information - Reinforcing bars Characteristic resistance values to tension load

Steel Failure - Characteristic resistance								
Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	43	62	111	173	270	442
Partial safety factor	γ_{Ms}	[-]	1.4					

Using TSIRCO-RES 341G with Threaded Bars
Combined pullout and concrete cone failure in uncracked concrete C20/25

Size			M10	M12	M16	M20	M24	M30		
Characteristic bond resistance in uncracked concrete										
			11	11	11	11	12	10		
Partial safety factor Y _{Mc} [-]			[-]	1.8	2.1					
C30/37				1.12						
Factor for concrete	C40/45		Ψ _c		1.23					
	C50/60					1.	30			

Splitting failure

Size				M12	M16	M20	M24	M30
Edge distance	[n	nm]	1.0 * h	$1.0 * h_{ef} \le 2.0 * h_{ef} * \left(2.5 - \frac{1}{h_{ef}}\right) \le 2.4 * \frac{1}{h_{ef}}$				$*h_{ef}$
Spacing	[mm] 2 • C _{cr,sp}							
Partial safety factor	Y _{Msp}	1	.8					

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

using inleaded fods in dry / wet, difcracked, C20/25 concrete.			70	Anchor Size				
Property	Symbol	Unit	M10	M12	M16	M20	M24	M30
Effective Embedment Depth = MIN	h _{ef}	mm	60	70	80	90	96	120
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	20.73	29.03	44.23	62.20	86.86	113.10
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 6d	h _{ef}	mm	60	72	96	120	144	180
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	20.73	29.86	53.08	82.94	130.29	169.65
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 8d	h _{ef}	mm	80	96	128	160	192	240
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	27.65	39.81	70.77	110.58	173.72	226.19
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 10d	h _{ef}	mm	100	120	160	200	240	300
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	34.56	49.76	88.47	138.23	217.15	282.74
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	31.10	45.62	70.77	117.50	190.00	282.74
Partial Safety Factor	γ_{Mc}	1	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	288	360
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	41.47	59.72	106.16	165.88	260.58	339.29
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 14d	h _{ef}	mm	140	168	224	280	336	420
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	48.38	69.67	123.85	193.52	304.01	395.84
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 16d	h _{ef}	mm	160	192	256	320	384	480
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	55.29	79.62	141.55	221.17	347.44	452.39
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 18d	h _{ef}	mm	180	216	288	360	432	540
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	62.20	89.57	159.24	248.81	390.86	508.94
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 20d	h _{ef}	mm	200	240	320	400	480	600
Characteristic Load (Combined concrete cone & pullout failure)	$N^0_{Rk,p}$	kN	69.12	99.53	176.93	276.46	434.29	565.49
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only								

f. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

combined effects of tension and shear, must be considered in accordance with LR029.

2 Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

3 Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

4 Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

5 Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

6 The compressive strength of the concrete (f_{Excube}) is assumed to be 25 N/mm² for C20/25 concrete.

7 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Min embedment depth

using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C. Anchor Size Property Symbol Unit M10 M12 M30 M16 M20 M24 Nominal Anchor Diameter d 10 12 16 20 24 30 mm $au_{\scriptscriptstyle{\mathsf{Rk}}}$ Characteristic Bond Strength N/mm² 11.00 11.00 11.00 11.00 12.00 10.00 Effective Embedment Depth h_{ef} mm 60 70 80 90 120 $N^0_{Rk,p}$ Characteristic Load (Combined Concrete Cone and Pullout Failure) kN 20.73 29.03 44.23 62.20 86.86 13.10 1.80 2.10 Partial Safety Factor 2.10 2.10 2.10 2.10 γ_{Mc} Characteristic Anchor Spacing (Splitting Failure) $S_{cr,sp}$ 120 140 160 180 mm 192 240 Characteristic Edge Distance (Splitting Failure) $\boldsymbol{C}_{\text{cr,sp}}$ 60 70 80 90 96 120 mm $S_{\text{cr},\text{Np}}$ Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure) mm 180 210 240 270 288 360 $C_{cr,Np}$ Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure) 90 105 120 135 144 180 mm

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		M10	M12	M16	M20	M24	M30
	30	0.53					
	35	0.57	0.53				
	40	0.6	0.56	0.53			
	45	0.64	0.59	0.56	0.53		
	50	0.67	0.62	0.58	0.56	0.54	
	60	0.75	0.68	0.64	0.6	0.58	0.53
	70	0.83	0.75	0.69	0.65	0.63	0.57
(u	80	0.91	0.82	0.75	0.7	0.67	0.6
Close Edge Distance, C (mm)	90	N/R	0.89	0.81	0.75	0.72	0.64
) ၁	100		0.96	0.87	0.8	0.77	0.67
, G	105		N/R	0.9	0.83	0.79	0.69
anc	110			0.93	0.86	0.82	0.71
ist	115			0.97	0.88	0.84	0.73
е	120			N/R	0.91	0.87	0.75
dg	125				0.94	0.9	0.77
Θ	130				0.97	0.92	0.79
SOI	135				N/R	0.95	0.81
O	140					0.98	0.83
	144					N/R	0.85
	145						0.85
	150						0.87
	155						0.89
	160						0.91
	165						0.93
	170						0.96
	175						0.98
	180						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

				Ancho	r Size		
		M10	M12	M16	M20	M24	M30
	30	0.61					
	35	0.62	0.59				
	40	0.63	0.6	0.58			
	45	0.65	0.61	0.59	0.58		
	50	0.66	0.62	0.6	0.59	0.59	
	60	0.69	0.65	0.63	0.61	0.6	0.58
	70	0.71	0.67	0.65	0.63	0.62	0.6
	80	0.74	0.69	0.67	0.65	0.64	0.61
Ê	90	0.76	0.72	0.69	0.67	0.66	0.63
Anchor Spacing Distance, S (mm)	100	0.79	0.74	0.71	0.69	0.67	0.64
S	110	0.82	0.76	0.73	0.7	0.69	0.65
Ċe,	120	0.84	0.79	0.75	0.72	0.71	0.67
tan	130	0.87	0.81	0.77	0.74	0.73	0.68
Ois	140	0.9	0.83	0.79	0.76	0.74	0.69
] g	150	0.92	0.86	0.81	0.78	0.76	0.71
Ğ	160	0.95	0.88	0.83	0.8	0.78	0.72
Spe	170	0.97	0.91	0.85	0.81	0.8	0.74
or 8	180	N/R	0.93	0.88	0.83	0.81	0.75
Ġ	190		0.95	0.9	0.85	0.83	0.76
Ā	200		0.98	0.92	0.87	0.85	0.78
	210		N/R	0.94	0.89	0.86	0.79
	220			0.96	0.91	0.88	0.81
	240			N/R	0.94	0.92	0.83
	260				0.98	0.95	0.86
	270				N/R	0.97	0.88
	280					0.99	0.89
	288					N/R	0.90
	300						0.92
	350						0.99
	360						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

^{3.} Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
4. Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

^{5.} Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.
6. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (f_{ck.cube}) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

⁵. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

 $^{^{6}}$ Close edge distances must exceed or be equal to the minimum close edge distance (C_{\min}) as defined in the ETA.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{c:No}" but without close edge considerations.
 Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

Interpolation is allowed.
 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Anchor spacing distances must exceed or be equal to the minimum anchor spacing (Smin) as

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Std embedment depth

using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

Dronovity	Cumbal	Unit			Ancho	or Size		
Property	Symbol	Unit	M10	M12	M16	M20	M24	M30
Nominal Anchor Diameter	d	mm	10	12	16	20	24	30
Characteristic Bond Strength	$\tau_{_{Rk}}$	N/mm ²	11.00	11.00	11.00	11.00	12.00	10.00
Effective Embedment Depth	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	31.10	45.62	70.77	117.50	190.00	282.74
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	180	220	256	340	420	600
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	90	110	128	170	210	300
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	$S_{cr,Np}$	mm	242	291	384	484	607	693
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	121	145	192	242	304	346

f. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Anchor			
		M10	M12	M16	M20	M24	M30
	45	0.56					
	50	0.58					
	55	0.61	0.56				
	60	0.63	0.58				
	65	0.66	0.6	0.54			
	70	0.69	0.63	0.55			
	80	0.75	0.67	0.58			
	85	0.77	0.69	0.6	0.54		
_	90	0.8	0.72	0.62	0.56		
Close Edge Distance, C (mm)	100	0.87	0.77	0.65	0.58		
Ē)	105	0.9	0.79	0.67	0.59	0.54	
Ö	110	0.93	0.81	0.69	0.61	0.55	
a)Ce	121	N/R	0.87	0.72	0.64	0.57	
star	130		0.92	0.76	0.66	0.59	
ä	140		0.97	0.79	0.69	0.61	
ge	145		N/R	0.81	0.7	0.62	
Е	150			0.83	0.72	0.63	0.59
Se	160			0.87	0.75	0.66	0.61
္မ	170			0.91	0.77	0.68	0.63
•	180			0.95	0.8	0.7	0.65
	192			N/R	0.84	0.73	0.67
	200				0.87	0.74	0.69
	220				0.93	0.79	0.73
	242				N/R	0.84	0.77
	260					0.89	0.81
	280					0.94	0.85
	300					0.99	0.90
	304					N/R	0.90
	320						0.94
	346						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply

					or Size		
		M10	M12	M16	M20	M24	M30
	45	0.65					
	50	0.66					
	55	0.66	0.64				
	60	0.67	0.64				
	65	0.68	0.65	0.59			
	70	0.69	0.66	0.6			
	80	0.71	0.68	0.61			
_	85	0.72	0.68	0.62	0.59		
Anchor Spacing Distance, S (mm)	90	0.73	0.69	0.62	0.59		
۳	100	0.75	0.71	0.64	0.6		
Ś	105	0.76	0.71	0.64	0.61	0.59	
ခင	125	0.79	0.75	0.67	0.63	0.6	
star	150	0.84	0.78	0.7	0.65	0.62	0.61
ä	175	0.88	0.82	0.73	0.68	0.64	0.63
ng	200	0.93	0.86	0.76	0.71	0.66	0.64
aCi.	225	0.97	0.9	0.8	0.73	0.69	0.66
Sp	242	N/R	0.93	0.82	0.75	0.7	0.67
ō	250		0.94	0.83	0.76	0.71	0.68
De la	275		0.98	0.86	0.78	0.73	0.7
⋖	291		N/R	0.88	0.8	0.74	0.71
	300			0.89	0.81	0.75	0.72
	350			0.96	0.86	0.79	0.75
	384			N/R	0.9	0.82	0.78
	400				0.91	0.83	0.79
	450				0.96	0.87	0.82
	484				N/R	0.9	0.85
	500					0.91	0.86
	550					0.95	0.90
	607					N/R	0.94
	693						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes

² Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (fakcube) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and " S_{α,N_0} " but without close edge considerations. ³ Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the FTA

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth

using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

Draw artis.	Cura la al	Llmit			Ancho	or Size		
Property	Symbol	Unit	M10	M12	M16	M20	M24	M30
Nominal Anchor Diameter	d	mm	10	12	16	20	24	30
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	11.00	11.00	11.00	11.00	12.00	10.00
Effective Embedment Depth	h _{ef}	mm	200	240	320	400	480	600
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	69.12	99.53	176.93	276.46	434.29	565.49
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	400	480	640	800	960	1200
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	200	240	320	400	480	600
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	$S_{cr,Np}$	mm	242	291	388	484	607	693
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	121	145	194	242	304	346

f. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

					r Size		
		M10	M12	M16	M20	M24	M30
	100	0.87					
	110	0.93					
	120	0.99	0.87				
	121	N/R	0.87				
	130		0.92				
	140		0.97				
	145		N/R				
	150						
<u></u>	160			0.87			
Close Edge Distance, C (mm)	170			0.9			
) (180			0.94			
e, (190			0.98			
anc	194			N/R			
ista	200				0.87		
Ω €	210				0.9		
dge	220				0.93		
Ш	230				0.96		
ose	240				0.99	0.84	
Ö	242				N/R	0.84	
	250					0.86	
	260					0.89	
	270					0.91	
	280					0.94	
	290					0.96	
	300					0.99	0.9
	310					N/R	0.92
	320						0.94
	330						0.96
	340						0.99
	346						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

				Ancho	or Size		
		M10	M12	M16	M20	M24	M30
	100	0.78					
	120	0.81	0.77				
	140	0.84	0.8				
	160	0.87	0.83	0.76			
	180	0.9	0.85	0.78			
	200	0.94	0.88	0.8	0.75		
	225	0.97	0.91	0.83	0.77		
<u>_</u>	240	0.99	0.93	0.85	0.79	0.73	
E	242	N/R	0.94	0.85	0.79	0.73	
Anchor Spacing Distance, S (mm)	275		0.98	0.88	0.82	0.75	
ė,	291		N/R	0.9	0.83	0.76	
anc	300			0.91	0.84	0.77	0.75
ist	325			0.94	0.86	0.79	0.77
g D	350			0.96	0.88	0.81	0.78
Ċ.	375			0.99	0.91	0.83	0.8
ba	388			N/R	0.92	0.84	0.81
<u>ς</u>	400				0.93	0.85	0.81
မို	425				0.95	0.86	0.83
And	450				0.97	0.88	0.85
	475				0.99	0.9	0.86
	484				N/R	0.91	0.87
	500					0.92	0.88
	525					0.94	0.89
	550					0.96	0.91
	575					0.98	0.93
	600					0.99	0.94
	607					N/R	0.95
	650						0.97
	693						N/R

pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

 $^{^{2}}$ Characteristic edge distance for splitting failure assumes $h/h_{\text{ef}} = 2.0$.

^{3.} Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
4. Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (f_{ekcube}) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

[&]quot; $S_{c:N_0}$ " but without close edge considerations. Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used. ⁴ Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^{6}}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Using TSIRCO-RES 341G with Threaded Bars
Combined pullout and concrete cone failure in cracked concrete C20/25

Size				M10	M12	M16	M20	M24	M30
Characteristic bond resistance in cracked concrete									
Characteristic bond resistan	ce dry/wet concrete	τ_{Rk}	[N/mm ²]	8.5	8.5	8.5	5.5	5.5	5.5
Partial safety factor	Y _{Mc}	[-]	1.8	2.1					
					1.	03			
Factor for concrete		Ψε			1.	06			
					1.	.07			

Splitting failure

Size			M10	M12	M16	M20	M24	M30		
Edge distance	[mm]			$1.0*h_{ef} \le 2.0*h_{ef}*\left(2.5 - \frac{h}{h_{ef}}\right) \le 2.4*h_{ef}$						
Spacing	[mm]			2 • C _{cr,sp}						
Partial safety factor	Y _{Msp} [-]			1.8						

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Effective Embedment Depth = MIN Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 6d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 8d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 8d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 10d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = STD Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = STD Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 12d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 14d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 14d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 14d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 14d Characteristic Load (Combined concrete cone & pullout failure) Partial Safety Factor Effective Embedment Depth = 16d Effective Embedment Depth = 16d	mm 6 kN 16 - 1.4 mm 8 kN 21 - 1.4 mm 10 kN 26 - 1.4 mm 9 kN 24	110 M12 50 70 5.02 22.4 80 2.10 5.02 23.0 80 2.10 30 96 .36 30.7 .80 2.10 00 120 5.70 38.4 .80 2.10 90 110 1.03 35.2	80 3 34.18 2.10 96 7 41.02 2.10 128 6 54.69 2.10 160 5 68.36 2.10 128	M20 90 31.10 2.10 120 41.47 2.10 160 55.29 2.10 200 69.12 2.10 170	M24 96 39.81 2.10 144 59.72 2.10 192 79.62 2.10 240 99.53 2.10 210	M30 120 62.20 2.10 180 93.31 2.10 240 124.41 2.10 300 155.51 2.10
$ \begin{array}{c} \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 6d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 8d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 10d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = \text{STD} & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 12d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone & pullout failure)} & N_{\text{Rk,p}}^{\text{O}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Characteristic Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Characteristic Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Characteristic Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Characteristic Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Characteristic Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text$	kN 16 - 1.4 mm 66 kN 16 - 1.5 mm 8 kN 21 - 1.6 mm 10 kN 26 - 1.6 mm 9 kN 24	3.02 22.4 80 2.10 60 72 3.02 23.0 80 2.10 30 96 .36 30.7 .80 2.10 00 120 3.70 38.4 80 2.10 90 110	3 34.18 2.10 96 7 41.02 2.10 128 6 54.69 2.10 160 5 68.36 2.10 128	31.10 2.10 120 41.47 2.10 160 55.29 2.10 200 69.12 2.10	39.81 2.10 144 59.72 2.10 192 79.62 2.10 240 99.53 2.10	62.20 2.10 180 93.31 2.10 240 124.41 2.10 300 155.51 2.10
Partial Safety Factor $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	- 1. mm 6 kN 16 - 1. mm 8 kN 21 - 1. mm 10 kN 26 - 1. mm 9 kN 24	80 2.10 60 72 6.02 23.0 80 2.10 80 96 .36 30.7 80 2.10 00 120 6.70 38.4 80 2.10 90 110	2.10 96 7 41.02 2.10 128 6 54.69 2.10 160 5 68.36 2.10 128	2.10 120 41.47 2.10 160 55.29 2.10 200 69.12 2.10	2.10 144 59.72 2.10 192 79.62 2.10 240 99.53 2.10	2.10 180 93.31 2.10 240 124.41 2.10 300 155.51 2.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mm 6 kN 16 - 1.4 mm 8 kN 21 - 1.4 mm 10 kN 26 - 1.4 mm 9 kN 24	60 72 6.02 23.0 80 2.10 80 96 .36 30.7 .80 2.10 00 120 6.70 38.4 80 2.10 90 110	96 7 41.02 2.10 128 6 54.69 2.10 160 5 68.36 2.10 128	120 41.47 2.10 160 55.29 2.10 200 69.12 2.10	144 59.72 2.10 192 79.62 2.10 240 99.53 2.10	180 93.31 2.10 240 124.41 2.10 300 155.51 2.10
$ \begin{array}{c} \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 8d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 10d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = \text{STD} & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 12d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & N^{0}_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Effective Embedment Depth} = 16d & h_{\text{ef}} & m \\ \end{array}$	kN 16 - 1. mm 8 kN 21 - 1. mm 10 kN 26 - 1. mm 9 kN 24	3.02 23.0 .80 2.10 .30 96 .36 30.7 .80 2.10 .00 120 .70 38.4 .80 2.10 .90 110	7 41.02 2.10 128 6 54.69 2.10 160 5 68.36 2.10 128	41.47 2.10 160 55.29 2.10 200 69.12 2.10	59.72 2.10 192 79.62 2.10 240 99.53 2.10	93.31 2.10 240 124.41 2.10 300 155.51 2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1. mm 8 kN 21 - 1. mm 10 kN 26 - 1. mm 9 kN 24	80 2.10 80 96 .36 30.7 80 2.10 00 120 5.70 38.4 80 2.10 90 110	2.10 128 6 54.69 2.10 160 5 68.36 2.10 128	2.10 160 55.29 2.10 200 69.12 2.10	2.10 192 79.62 2.10 240 99.53 2.10	2.10 240 124.41 2.10 300 155.51 2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mm 8 kN 21 - 1 mm 10 kN 26 - 1 mm 9 kN 24	30 96 .36 30.7 .80 2.10 00 120 5.70 38.4 .80 2.10 .90 110	128 6 54.69 2.10 160 5 68.36 2.10 128	160 55.29 2.10 200 69.12 2.10	192 79.62 2.10 240 99.53 2.10	240 124.41 2.10 300 155.51 2.10
$ \begin{array}{c} \text{Characteristic Load (Combined concrete cone \& pullout failure)} & \text{N}^0_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 10d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & \text{N}^0_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = \text{STD} & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & \text{N}^0_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 12d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & \text{N}^0_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & \text{N}^0_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 14d & h_{\text{ef}} & m \\ \text{Characteristic Load (Combined concrete cone \& pullout failure)} & \text{N}^0_{\text{Rk,p}} & \text{kl} \\ \text{Partial Safety Factor} & \gamma_{\text{Mc}} & - \\ \text{Effective Embedment Depth} = 16d & h_{\text{ef}} & m \\ \text{Effective Embedment Depth} = 16d & h_{\text{ef}} & m \\ \end{array}$	kN 21 - 1. mm 10 kN 26 - 1. mm 9 kN 24	.36 30.70 .80 2.10 .00 120 .70 38.4 .80 2.10 .90 110	54.69 2.10 160 5 68.36 2.10 128	55.29 2.10 200 69.12 2.10	79.62 2.10 240 99.53 2.10	124.41 2.10 300 155.51 2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1. nm 10 kN 26 - 1. nm 9 kN 24	80 2.10 00 120 5.70 38.4 80 2.10 90 110	2.10 160 5 68.36 2.10 128	2.10 200 69.12 2.10	2.10 240 99.53 2.10	2.10 300 155.51 2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nm 10 kN 26 - 1.4 nm 9 kN 24	00 120 5.70 38.4 80 2.10 90 110	160 5 68.36 2.10 128	200 69.12 2.10	240 99.53 2.10	300 155.51 2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	kN 26 - 1.4 mm 9 kN 24	38.4 .80 2.10 .80 110	5 68.36 2.10 128	69.12 2.10	99.53	155.51 2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1.3 nm 9 kN 24	.80 2.10 90 110	2.10	2.10	2.10	2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nm 9 kN 24	90 110	128			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	kN 24		_	170	210	200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.03 35.2			-	300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			54.69	58.75	87.08	155.51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1.	.80 2.10	2.10	2.10	2.10	2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nm 12	20 144	192	240	288	360
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	kN 32	2.04 46.1	4 82.03	82.94	119.43	186.61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1.3	.80 2.10	2.10	2.10	2.10	2.10
Partial Safety Factor γ_{Mc} - Effective Embedment Depth = 16d h_{ef} m	nm 14	40 168	224	280	336	420
Partial Safety Factor γ_{Mc} - Effective Embedment Depth = 16d h_{ef} m	kN 37	7.38 53.8	3 95.71	96.76	139.34	217.71
	- 1.3	.80 2.10	2.10	2.10	2.10	2.10
Characteristic Load (Combined concrete cone & pullout failure) No _{Rk,p} kl	nm 16	60 192	256	320	384	480
	kN 42	2.73 61.5	2 109.38	110.58	159.24	248.81
Partial Safety Factor γ _{Mc} -	- 1.3	.80 2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 18d	nm 18	80 216	288	360	432	540
Characteristic Load (Combined concrete cone & pullout failure) No _{Rk,p} kl	kN 48	3.07 69.2	2 123.05	124.41	179.15	279.92
Partial Safety Factor γ _{Mc} -	- 1.5	.80 2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 20d		00 240	320	400	480	600
Characteristic Load (Combined concrete cone & pullout failure) No _{Rk,p} kl	nm 20		1 400 70	138.23	199.05	311.02
Partial Safety Factor γ_{Mc} -		3.41 76.9	1 136.72	100.20		2.10

f. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

combined effects of tension and shear, must be considered in accordance with TR029.

2 Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

3 Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

4 Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

5 Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

6 The compressive strength of the concrete (f_{iscolor}) is assumed to be 25 N/mm² for C20/25 concrete.

7 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Min embedment depth

using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Dranauti	Couran la al	Linia			Ancho	r Size		
Property	Symbol	Unit	M10	M12	M16	M20	M24	M30
Nominal Anchor Diameter	d	mm	10	12	16	20	24	30
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm²	8.50	8.50	8.50	5.50	5.50	5.50
Effective Embedment Depth	h _{ef}	mm	60	70	80	90	96	120
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	16.02	22.43	34.18	31.10	39.81	62.20
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	120	140	160	180	192	240
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	60	70	80	90	96	120
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	180	210	240	270	288	360
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	90	105	120	135	144	180

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	or Size		
		M10	M12	M16	M20	M24	M30
	30	0.53					
	35	0.57	0.53				
	40	0.60	0.56	0.53			
	45	0.64	0.59	0.56	0.53		
	50	0.67	0.62	0.58	0.56	0.54	
	60	0.75	0.68	0.64	0.6	0.58	0.53
	70	0.83	0.75	0.69	0.65	0.63	0.57
Ê	80	0.91	0.82	0.75	0.70	0.67	0.6
Close Edge Distance, C (mm)	90	N/R	0.89	0.81	0.75	0.72	0.64
ϋ	100		0.96	0.87	0.8	0.77	0.67
é,	105		N/R	0.90	0.83	0.79	0.69
auc	110			0.93	0.86	0.82	0.71
ist	115			0.97	0.88	0.84	0.73
е П	120			N/R	0.91	0.87	0.75
g	125				0.94	0.90	0.77
Ф	130				0.97	0.92	0.79
<u>so</u>	135				N/R	0.95	0.81
O	140					0.98	0.83
	144					0.99	0.85
	145					N/R	0.85
	150						0.87
	155						0.89
	160						0.91
	165						0.93
	170						0.96
	175						0.98
	180						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Reduction factors for anchor spacing:

Combir	ned cor	icrete c	one and			2	
				Anchor	Size		
		M10	M12	M16	M20	M24	M30
	30	0.59					
	35	0.61	0.58				
	40	0.62	0.6	0.58			
	45	0.63	0.61	0.59	0.58		
	50	0.65	0.62	0.6	0.59	0.59	
	60	0.67	0.64	0.63	0.61	0.6	0.58
(mr	70	0.7	0.67	0.65	0.63	0.62	0.6
(m	80	0.73	0.69	0.67	0.65	0.64	0.61
S,	90	0.76	0.71	0.69	0.67	0.66	0.63
Anchor Spacing Distance, S (mm)	100	0.78	0.74	0.71	0.69	0.67	0.64
staı	120	0.84	0.79	0.75	0.72	0.71	0.67
Dis	140	0.89	0.83	0.79	0.76	0.74	0.69
ng	160	0.95	0.88	0.83	0.8	0.78	0.72
aci	180	N/R	0.93	0.88	0.83	0.81	0.75
Sp	200		0.98	0.92	0.87	0.85	0.78
Jor	210		N/R	0.94	0.89	0.86	0.79
nct	220			0.96	0.91	0.88	0.81
×	240			N/R	0.94	0.92	0.83
	260				0.98	0.95	0.86
	270				N/R	0.97	0.88
	280					0.99	0.89
	288					N/R	0.9
	300						0.92
	320						0.94
	340						0.97
	360						N/R
T-1-1-1-1		anly applica	hi la Cantonata		le ! l		

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

² Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (fakcube) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

^{6.} Close edge distances must exceed or be equal to the minimum close edge distance (Cmin) as defined in the ETA.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,bp}" but without close edge considerations.

^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Tension load calculations for combined concrete cone & pullout failure at Std embedment depth

using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Dronowhy	Cumbal	Unit			Ancho	or Size		
Property	Symbol	Unit	M10	M12	M16	M20	M24	M30
Nominal Anchor Diameter	d	mm	10	12	16	20	24	30
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	8.50	8.50	8.50	5.50	5.50	5.50
Effective Embedment Depth	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	24.03	35.25	54.69	58.75	87.08	155.51
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	180	220	256	340	420	600
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	90	110	128	170	210	300
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	213	255	341	343	411	514
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	106	128	170	171	206	257

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		M10	M12	M16	M20	M24	M30
	45	0.59					
	50	0.62					
	55	0.65	0.59				
	60	0.68	0.62				
	65	0.71	0.64	0.56			
	70	0.74	0.67	0.58			
	80	0.81	0.72	0.62			
<u> </u>	85	0.84	0.75	0.64	0.64		
Close Edge Distance, C (mm)	90	0.88	0.78	0.66	0.65		
Ö	100	0.95	0.83	0.70	0.69		
Ġ,	105	0.99	0.86	0.72	0.71	0.64	
Si Si	106	N/R	0.87	0.72	0.72	0.65	
ista	110		0.89	0.74	0.73	0.66	
۵	120		0.95	0.78	0.77	0.69	
gge	128		N/R	0.81	0.81	0.72	
Щ	130			0.82	0.82	0.73	
)Se	140			0.86	0.86	0.76	
ŏ	150			0.91	0.90	0.79	0.69
	160			0.95	0.95	0.83	0.72
	170			N/R	0.99	0.87	0.75
	171				N/R	0.87	0.75
	180					0.90	0.77
	190					0.94	0.80
	200					0.98	0.83
	206					N/R	0.85
	220						0.89
	240						0.95
	257						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

COITIDII	ieu coi	icrete c	one an			-	
			1		r Size		,
		M10	M12	M16	M20	M24	M30
	45	0.65					
	50	0.66					
	55	0.67	0.64				
	60	0.68	0.65				
	65	0.69	0.66	0.60			
	70	0.70	0.66	0.60			
	80	0.72	0.68	0.62			
Ê	85	0.73	0.69	0.62	0.67		
Ē	90	0.74	0.70	0.63	0.68		
Anchor Spacing Distance, S (mm)	100	0.76	0.72	0.65	0.69		
Ġ,	105	0.78	0.73	0.65	0.70	0.67	
anc	125	0.82	0.77	0.68	0.72	0.69	
oist	150	0.87	0.81	0.72	0.76	0.72	0.68
ЭБ	175	0.92	0.86	0.76	0.79	0.74	0.70
cin	200	0.97	0.90	0.79	0.82	0.77	0.72
þa	213	N/R	0.92	0.81	0.84	0.79	0.73
5	225		0.95	0.83	0.85	0.80	0.74
ρģ	250		0.99	0.87	0.88	0.83	0.77
Ā	255		N/R	0.87	0.89	0.83	0.77
	275			0.90	0.92	0.85	0.79
	300			0.94	0.95	0.88	0.81
	341			N/R	0.99	0.92	0.85
	343				N/R	0.93	0.85
	350					0.93	0.86
	400					0.99	0.90
	411					N/R	0.91
	450						0.94
	500						0.99
	514						N/R

¹ Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes

Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
4 Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (focuse) is assumed to be 25 N/mm? for C20/25 concrete.

8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^6}$. Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

[&]quot;S_{cr.Np}" but without close edge considerations.
³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^6}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Dranadu	Couran la al	Linia			Ancho	r Size		
Property	Symbol	Unit	M10	M12	M16	M20	M24	M30
Nominal Anchor Diameter	d	mm	10	12	16	20	24	30
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	8.50	8.50	8.50	5.50	5.50	5.50
Effective Embedment Depth	h _{ef}	mm	200	240	320	400	480	600
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	53.41	76.91	136.72	138.23	199.05	311.02
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	400	480	640	800	960	1200
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	200	240	320	400	480	600
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	213	255	341	343	411	514
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	106	128	170	171	206	257

f. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

		Anchor Size M10									
		M10	M12	M16	M20	M24	M30				
	100	0.95									
	106	N/R									
	110										
	120		0.95								
	128		N/R								
	130										
<u></u>	140										
Close Edge Distance, C (mm)	150										
Ö	160			0.95							
Ġ,	170			N/R							
Suc	171										
ists	180										
<u>Θ</u>	190										
dge	200				N/R						
Ш	206										
ose	210										
$\overline{\circ}$	220										
	230										
	240					N/R					
	250										
	257										
	260										
	270										
	280										
	290										
	300						N/R				

¹ Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

					r Size		
		M10	M12	M16	M20	M24	M30
	100	0.79					
	120	0.83	0.79				
	140	0.87	0.82				
	160	0.91	0.85	0.78			
	180	0.94	0.88	0.80			
Û	200	0.98	0.92	0.83	0.84		
Anchor Spacing Distance, S (mm)	213	N/R	0.94	0.85	0.86		
S	220		0.95	0.85	0.87		
é	240		0.98	0.88	0.89	0.84	
ano	255		N/R	0.90	0.91	0.85	
ist	260			0.90	0.91	0.86	
д	280			0.93	0.93	0.88	
cin	300			0.95	0.95	0.90	0.83
pa	325			0.98	0.98	0.92	0.85
2.5	341			N/R	0.99	0.94	0.87
cho	343				N/R	0.94	0.87
Ano	350					0.94	0.87
	375					0.97	0.89
	400					0.99	0.91
	411					N/R	0.92
	425						0.93
	450						0.95
	475						0.97
	500						0.99
	514						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes

² Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (fakcube) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

must be considered and different reduction factors may apply.

² Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

[&]quot;S_{σ:Np}" but without close edge considerations.
³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^{6}}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the FTA

Product Data Sheet

Using TSIRCO-RES 341G with Reinforcing bars

Combined pullout and concrete cone failure in uncracked concrete C20/25

Size				Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Characteristic bond resistance	e in uncracked concrete								
Characteristic bond resistance	ce dry/wet concrete	τ_{Rk}	[N/mm ²]	11	11	12	12	12	12
Partial safety factor		Y _{Mc}	[-]	1.8	2.1				
	C30/37					1.	.06		
Factor for concrete		Ψ _c			1.	.11			
	C50/60					1.	.14		

Splitting failure

Size			Ø10mm Ø12mm Ø16mm Ø20mm Ø25mm					
Edge distance	[n	nm]	1.0 * h	$a_{ef} \le 2.0$	$*h_{ef}*$	$\left(2.5 - \frac{h}{h}\right)$	$\left(\frac{h}{ef}\right) \le 2.$	$4*h_{ef}$
Spacing	[mm] 2 • C _{cr,sp}							
Partial safety factor	Y _{Msp}	[-]			1	.8		

m / v.2.08

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

doing removering bars in ary / wet, and doked, 020/20 ochore	to. Tompo	lataro rai						
Property	Symbol	Unit				or Size		
Effective Embedment Depth = MIN	h _{ef}	mm	Ø10mm 60	Ø12mm 70	Ø16mm 80	Ø20mm 90	Ø25mm	Ø32mm
Characteristic Load (Combined concrete cone & pullout failure)	_	kN	20.73	29.03	48.25	67.86	94.25	154.42
	N ⁰ _{Rk,p}	KIN	1.80	2.10	2.10	2.10	2.10	2.10
Partial Safety Factor	γ _{Mc}	-						
Effective Embedment Depth = 6d		mm	60	72	96	120	150	192
Characteristic Load (Combined concrete cone & pullout failure)	Nº _{Rk,p}	kN	20.73	29.86	57.91	90.48	141.37	231.62
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 8d	h _{ef}	mm	80	96	128	160	200	256
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	27.65	39.81	77.21	120.64	188.50	308.83
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 10d	h _{ef}	mm	100	120	160	200	250	320
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	34.56	49.76	96.51	150.80	235.62	386.04
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	31.10	45.62	77.21	128.18	197.92	361.91
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	300	384
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	41.47	59.72	115.81	180.96	282.74	463.25
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 14d	h _{ef}	mm	140	168	224	280	350	448
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	48.38	69.67	135.11	211.12	329.87	540.45
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 16d	h _{ef}	mm	160	192	256	320	400	512
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	55.29	79.62	154.42	241.27	376.99	617.66
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 18d	h _{ef}	mm	180	216	288	360	450	576
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	62.20	89.57	173.72	271.43	424.12	694.87
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 20d	h _{ef}	mm	200	240	320	400	500	640
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	69.12	99.53	193.02	301.59	471.24	772.08
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10

the Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

2 Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

3 Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

4 Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

5 Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (f_{ck.cube}) is assumed to be 25 N/mm² for C20/25 concrete.
7. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Min embedment depth

using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

Bronorty	Symbol	Unit			Ancho	r Size		
Property	Syllibol	Offic	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	11.00	11.00	12.00	12.00	12.00	12.00
Effective Embedment Depth	h _{ef}	mm	60	70	80	90	100	128
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	20.73	29.03	48.25	67.86	94.25	154.42
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	120	140	160	180	200	256
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	60	70	80	90	100	128
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	180	210	240	270	300	384
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	90	105	120	135	150	192

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	30	0.53					
	35	0.57	0.53				
	40	0.60	0.56	0.53			
	45	0.64	0.59	0.56	0.53		
	50	0.67	0.62	0.58	0.56	0.53	
	60	0.75	0.68	0.64	0.6	0.57	
	65	0.79	0.72	0.66	0.63	0.59	0.54
	70	0.83	0.75	0.69	0.65	0.62	0.55
<u></u>	80	0.91	0.82	0.75	0.70	0.66	0.58
Close Edge Distance, C (mm)	90	N/R	0.89	0.81	0.75	0.70	0.62
٥	100		0.96	0.87	0.8	0.75	0.65
e, (105		N/R	0.90	0.83	0.77	0.67
ınc	110			0.93	0.86	0.80	0.69
ista	115			0.97	0.88	0.82	0.70
	120			N/R	0.91	0.85	0.72
dge	125				0.94	0.87	0.74
Ĕ	130				0.97	0.9	0.76
ose	135				N/R	0.92	0.78
ŏ	140					0.95	0.79
	145					0.97	0.81
	150					N/R	0.83
	155						0.85
	160						0.87
	165						0.89
	170						0.91
	175						0.93
	180						0.95
	185						0.97
	190						0.99
	192						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	30	0.61					
	35	0.62	0.59				
	40	0.63	0.60	0.58			
	45	0.65	0.61	0.59	0.58		
	50	0.66	0.62	0.60	0.59	0.58	
	55	0.67	0.63	0.61	0.60	0.59	
	60	0.69	0.65	0.63	0.61	0.60	0.58
Ê	65	0.70	0.66	0.64	0.62	0.61	0.58
Ē	70	0.71	0.67	0.65	0.63	0.62	0.59
Anchor Spacing Distance, S (mm)	80	0.74	0.69	0.67	0.65	0.63	0.6
è,	90	0.76	0.72	0.69	0.67	0.65	0.62
anc	100	0.79	0.74	0.71	0.69	0.67	0.63
ist	120	0.84	0.79	0.75	0.72	0.70	0.66
ЭБ	140	0.90	0.83	0.79	0.76	0.73	0.68
cj.	160	0.95	0.88	0.83	0.80	0.77	0.71
ba	180	N/R	0.93	0.88	0.83	0.80	0.73
5	200		0.98	0.92	0.87	0.83	0.76
Эģ	210		N/R	0.94	0.89	0.85	0.77
Αŭ	220			0.96	0.91	0.87	0.79
	240			N/R	0.94	0.90	0.81
	260				0.98	0.93	0.84
	270				N/R	0.95	0.85
	280					0.97	0.86
	300					N/R	0.89
	320						0.92
	340						0.94
	360						0.97
	380						0.99
	384						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (fakcube) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

^{1.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

 $^{^6}$ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

[&]quot;S_{cr.Np}" but without close edge considerations.
³ Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^6}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Std embedment depth

using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

Droporty.	Symbol	Unit	,		Ancho	or Size		
Property	Symbol	Offic	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	11.00	11.00	12.00	12.00	12.00	12.00
Effective Embedment Depth	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	31.10	45.62	77.21	128.18	197.92	361.91
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	180	220	256	340	420	600
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	90	110	128	170	210	300
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	$S_{cr,Np}$	mm	242	291	384	506	630	810
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	121	145	192	253	315	405

f. Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	45	0.56					
	50	0.58					
	55	0.61	0.56				
	60	0.63	0.58				
	65	0.66	0.60	0.54			
	70	0.69	0.63	0.55			
	80	0.75	0.67	0.58			
	85	0.77	0.69	0.60	0.53		
	90	0.80	0.72	0.62	0.55		
	100	0.87	0.77	0.65	0.57		
Close Edge Distance	105	0.90	0.79	0.67	0.58	0.53	
itar	121	N/R	0.87	0.72	0.62	0.56	
Dis	140		0.97	0.79	0.67	0.60	
Эe	145		N/R	0.81	0.69	0.61	
Еd	150			0.83	0.70	0.62	0.56
Se	160			0.87	0.73	0.64	0.57
8	180			0.95	0.78	0.68	0.60
	192			N/R	0.82	0.71	0.62
	200				0.84	0.73	0.63
	220				0.90	0.77	0.67
	240				0.96	0.82	0.70
	253				N/R	0.85	0.72
	260					0.86	0.73
	280					0.91	0.77
	300					0.96	0.80
	315					N/R	0.83
	325						0.85
	350						0.89
	375						0.94
	405						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

70111011	100 001	iciele c	0110 011	Ancho			
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	45	0.65					
	50	0.66					
	55	0.66	0.64				
	60	0.67	0.64				
	65	0.68	0.65	0.58			
	70	0.69	0.66	0.59			
	80	0.71	0.68	0.60			
_	85	0.72	0.68	0.61	0.58		
Anchor Spacing Distance, S (mm)	90	0.73	0.69	0.62	0.59		
Ē	100	0.75	0.71	0.63	0.60		
o)	105	0.76	0.71	0.64	0.60	0.58	
nce	150	0.84	0.78	0.70	0.65	0.62	0.59
sta	200	0.93	0.86	0.76	0.70	0.66	0.62
Ö	242	N/R	0.93	0.82	0.74	0.69	0.65
ing	250		0.94	0.83	0.75	0.70	0.65
ac	291		N/R	0.88	0.79	0.73	0.68
S	300			0.89	0.80	0.74	0.69
יסר	350			0.96	0.85	0.78	0.72
loc l	384			N/R	0.88	0.80	0.74
⋖	400				0.90	0.82	0.75
	450				0.94	0.86	0.78
	500				0.99	0.90	0.81
	506				N/R	0.90	0.81
	600					0.98	0.87
	630					N/R	0.89
	650						0.90
	700						0.93
	750						0.96
	800						0.99
	810						N/R
Tabulated	volues ere	anly applical	alo for inoto	acco whore	nombined of	noroto con	

¹ Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes

² Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (fakcube) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is

sufficient to avoid splitting failure. 6 Close edge distances must exceed or be equal to the minimum close edge distance (C_{\min}) as defined in the ETA.

must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr.Ng}" but without close edge considerations.
^a Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^{\}alpha}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S $_{min}$) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth

using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +40°C.

Droporty	Symbol	Unit			Ancho	r Size		
Property	Symbol	Offic	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	10	12	16	20	25	32
Characteristic Bond Strength	$\tau_{_{Rk}}$	N/mm ²	11.00	11.00	12.00	12.00	12.00	12.00
Effective Embedment Depth	h _{ef}	mm	200	240	320	400	500	640
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	69.12	99.53	193.02	301.59	471.24	772.08
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	400	480	640	800	1000	1280
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	200	240	320	400	500	640
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	$S_{cr,Np}$	mm	242	291	405	506	632	810
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	121	145	202	253	316	405

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	100	0.87					
	110	0.93					
	120	0.99	0.87				
	121	N/R	0.87				
	130		0.92				
	140		0.97				
	145		N/R				
Ē	150						
Ē	160			0.84			
Ö	170			0.88			
, O	180			0.91			
Close Edge Distance, C (mm)	190			0.95			
ists	200			0.99	0.84		
	202			N/R	0.84		
dge	220				0.9		
Ш	240				0.96		
ose	250				0.99	0.84	
Ö	253				N/R	0.85	
	260					0.86	
	280					0.91	
	300					0.96	
	316					N/R	
	320						0.84
	340						0.88
	360						0.91
	380						0.95
	400						0.99
	405						N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	100	0.78					
	120	0.81	0.77				
	140	0.84	0.80				
	160	0.87	0.83	0.75			
	180	0.90	0.85	0.77			
<u> </u>	200	0.94	0.88	0.79	0.74		
Anchor Spacing Distance, S (mm)	242	N/R	0.94	0.83	0.77		
S	250		0.95	0.84	0.78	0.72	
é	291		N/R	0.88	0.82	0.75	
auc	300			0.89	0.82	0.76	
ist	320			0.91	0.84	0.77	0.71
g D	350			0.94	0.87	0.80	0.72
ci.	400			0.99	0.91	0.83	0.75
ba	405			N/R	0.91	0.84	0.76
5	450				0.95	0.87	0.78
સુ	500				0.99	0.90	0.81
Ā	506				N/R	0.91	0.82
	550					0.94	0.84
	600					0.98	0.87
	632					N/R	0.89
	650						0.90
	700						0.93
	750						0.96
	800						0.99
	810						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes

Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (focuse) is assumed to be 25 N/mm? for C20/25 concrete.

8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^6}$. Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{c:No"} but without close edge considerations.
³ Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^{6}}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the FTA

Product Data Sheet

Using TSIRCO-RES 341G with Reinforcing bars Combined pullout and concrete cone failure in cracked concrete C20/25

Size				Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Characteristic bond resistance in cracked concrete									
Characteristic bond resistan	ce dry/wet concrete	τ_{Rk}	[N/mm²]	8.5	8.5	6.5	6.5	4.5	4.5
Partial safety factor		Y _{мс}	[-]	1.8	2.1				
	C30/37					1.	04		
Factor for concrete		Ψε			1.	07			
	C50/60					1.	09		

Splitting failure

Size			Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Edge distance	[mm] $1.0 * h_{ef} \le 2.0 * h_{ef} * \left(2.5 - \frac{h}{h_{ef}}\right)$					$\left(\frac{1}{ef}\right) \le 2.4$	$4*h_{ef}$	
Spacing	[m	nm]			2 • (C _{cr,sp}		
Partial safety factor	Y _{Msp}	[-]			1.	.8		

m / v.2.08

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at various embedment depths using reinforcing bars in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

deling remineraling bare in ary 7 wet, ordered, 626/26 consistee.	Tomporat	are range	, +0 0	7 10 17	0 0.			
Property	Symbol	Unit			Ancho	or Size		
' '	,		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Effective Embedment Depth = MIN	h _{ef}	mm	60	70	80	90	100	128
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	16.02	22.43	26.14	36.76	35.34	57.91
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 6d	h _{ef}	mm	60	72	96	120	150	192
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}$	kN	16.02	23.07	31.37	49.01	53.01	86.86
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 8d	h _{ef}	mm	80	96	128	160	200	256
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	21.36	30.76	41.82	65.35	70.69	115.81
Partial Safety Factor	γ_{Mc}	ı	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 10d	h _{ef}	mm	100	120	160	200	250	320
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	26.70	38.45	52.28	81.68	88.36	144.76
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	24.03	35.25	41.82	69.43	74.22	135.72
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	300	384
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	32.04	46.14	62.73	98.02	106.03	173.72
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 14d	h _{ef}	mm	140	168	224	280	350	448
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	37.38	53.83	73.19	114.35	123.70	202.67
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 16d	h _{ef}	mm	160	192	256	320	400	512
Characteristic Load (Combined concrete cone & pullout failure)	$N_{Rk,p}^0$	kN	42.73	61.52	83.64	130.69	141.37	231.62
Partial Safety Factor	γ_{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 18d	h _{ef}	mm	180	216	288	360	450	576
Characteristic Load (Combined concrete cone & pullout failure)	N⁰ _{Rk,p}	kN	48.07	69.22	94.10	147.03	159.04	260.58
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
Effective Embedment Depth = 20d	h _{ef}	mm	200	240	320	400	500	640
Characteristic Load (Combined concrete cone & pullout failure)	N ⁰ _{Rk,p}	kN	53.41	76.91	104.55	163.36	176.71	289.53
Partial Safety Factor	γ _{Mc}	-	1.80	2.10	2.10	2.10	2.10	2.10
•								

^{*} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

2 Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

3 Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

4 Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

5 Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (f_{ckcube}) is assumed to be 25 N/mm² for C20/25 concrete.
7. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Min embedment depth

using reinforcing bars in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Droporty.	Symbol	Unit			Ancho	r Size		
Property	Symbol	Offic	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	8.50	8.50	6.50	6.50	4.50	4.50
Effective Embedment Depth	h _{ef}	mm	60	70	80	90	100	128
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	16.02	22.43	26.14	36.76	35.34	57.91
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	120	140	160	180	200	256
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	60	70	80	90	100	128
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	$S_{cr,Np}$	mm	180	210	240	270	300	384
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{\text{cr,Np}}$	mm	90	105	120	135	150	192

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	30	0.53					
	35	0.57	0.53				
	40	0.6	0.56	0.53			
	45	0.64	0.59	0.56	0.53		
	50	0.67	0.62	0.58	0.56	0.53	
	60	0.75	0.68	0.64	0.6	0.57	
	65	0.79	0.72	0.66	0.63	0.59	0.54
	70	0.83	0.75	0.69	0.65	0.62	0.55
Έ	80	0.91	0.82	0.75	0.7	0.66	0.58
Close Edge Distance, C (mm)	90	N/R	0.89	0.81	0.75	0.7	0.62
O	100		0.96	0.87	0.8	0.75	0.65
ce	105		N/R	0.9	0.83	0.77	0.67
tan	110			0.93	0.86	0.8	0.69
Dis	115			0.97	0.88	0.82	0.7
Эе	120			N/R	0.91	0.85	0.72
р́⊒	130				0.97	0.9	0.76
se l	135				N/R	0.92	0.78
9	140					0.95	0.79
O	145					0.97	0.81
	150					N/R	0.83
	155						0.85
	160						0.87
	165						0.89
	170						0.91
	175						0.93
	180						0.95
	185						0.97
	190						0.99
	192						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and rabulated values are only applicable in installaces where commend concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply. Tabulated values are based on a single anchor with a single close edge. Tabulated values

			Anchor Size								
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm				
	30	0.59									
	35	0.61	0.58								
	40	0.62	0.6	0.58							
	45	0.63	0.61	0.59	0.58						
	50	0.65	0.62	0.6	0.59	0.59					
	60	0.67	0.64	0.63	0.61	0.6					
_	65	0.69	0.65	0.64	0.62	0.61	0.58				
Ę.	70	0.7	0.67	0.65	0.63	0.62	0.59				
ī,	80	0.73	0.69	0.67	0.65	0.64	0.6				
S,	90	0.76	0.71	0.69	0.67	0.65	0.62				
Anchor Spacing Distance, S (mm)	100	0.78	0.74	0.71	0.69	0.67	0.63				
staı	120	0.84	0.79	0.75	0.72	0.7	0.66				
ĕ	140	0.89	0.83	0.79	0.76	0.74	0.68				
ng	160	0.95	0.88	0.83	0.8	0.77	0.71				
aci	180	N/R	0.93	0.88	0.83	0.8	0.73				
S	200		0.98	0.92	0.87	0.84	0.76				
آور	210		N/R	0.94	0.89	0.85	0.77				
nc	220			0.96	0.91	0.87	0.79				
⋖	240			N/R	0.94	0.9	0.81				
	260				0.98	0.93	0.84				
	270				N/R	0.95	0.85				
	280					0.97	0.86				
	300					N/R	0.89				
	320						0.92				
	340						0.94				
	360						0.97				
	380						0.99				
	384						N/R				

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

² Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (f_{ckcube}) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

must not be used if multiple close edges exist.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

 $^{^6}$. Close edge distances must exceed or be equal to the minimum close edge distance (C_{\min}) as defined in the ETA.

² Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{c:Np}" but without close edge considerations.
³ Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

 $^{^6}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at Std embedment depth

using reinforcing bars in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Droporty	Symbol	Unit	Anchor Size					
Property	Syllibol	Offic	Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	8.50	8.50	6.50	6.50	4.50	4.50
Effective Embedment Depth	h _{ef}	mm	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	24.03	35.25	41.82	69.43	74.22	135.72
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	180	220	256	340	420	600
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	90	110	128	170	210	300
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	213	255	298	372	387	496
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	106	128	149	186	194	248

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

			Anchor Size									
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm					
	45	0.59										
	50	0.62										
	55	0.65	0.59									
	60	0.68	0.62									
	65	0.71	0.64	0.6								
	70	0.74	0.67	0.62								
	80	0.81	0.72	0.66								
Close Edge Distance, C (mm)	85	0.84	0.75	0.68	0.61							
Œ	90	0.88	0.78	0.71	0.63							
Ö	100	0.95	0.83	0.75	0.66							
ce	105	0.99	0.86	0.78	0.68	0.67						
far	106	N/R	0.87	0.78	0.68	0.67						
Dis	120		0.95	0.85	0.73	0.72						
Э	128		N/R	0.89	0.76	0.75						
р́ш	140			0.95	0.81	0.79						
ge	149			N/R	0.85	0.82						
ĕ	150				0.85	0.83	0.71					
	160				0.89	0.87	0.74					
	180				0.97	0.94	0.79					
	186				N/R	0.97	0.81					
	194					N/R	0.83					
	200						0.85					
	210						0.88					
	220						0.91					
	230						0.94					
	240						0.97					
	248						N/R					

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Reduction factors for anchor spacing:

Combined concrete cone and pullout failure										
				Ancho	r Size					
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm			
	45	0.65								
	50	0.66								
	55	0.67	0.64							
	60	0.68	0.65							
	65	0.69	0.66	0.65						
	70	0.70	0.66	0.66						
	80	0.72	0.68	0.67						
Ê	85	0.73	0.69	0.68	0.64					
Anchor Spacing Distance, S (mm)	90	0.74	0.70	0.69	0.65					
S	100	0.76	0.72	0.70	0.66					
, G	105	0.78	0.73	0.71	0.66	0.69				
anc	125	0.82	0.77	0.74	0.69	0.71				
ist	150	0.87	0.81	0.78	0.72	0.74	0.70			
gГ	200	0.97	0.90	0.85	0.78	0.80	0.74			
cin	213	N/R	0.92	0.87	0.80	0.81	0.75			
ba	225		0.95	0.89	0.82	0.83	0.76			
5	250		0.99	0.93	0.85	0.85	0.79			
chc	255		N/R	0.94	0.85	0.86	0.79			
Ā	275			0.97	0.88	0.88	0.81			
	298			N/R	0.91	0.90	0.83			
	300				0.91	0.91	0.83			
	325				0.94	0.93	0.85			
	350				0.97	0.96	0.87			
	372				N/R	0.98	0.89			
	375					0.99	0.90			
	387					N/R	0.91			
	400						0.92			
	450						0.96			
	496						N/R			
Tabulated										

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁵ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (f_{ckcube}) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^{6}}$ Close edge distances must exceed or be equal to the minimum close edge distance (C_{\min}) as defined in the ETA.

[&]quot;S_{cr.Np}" but without close edge considerations.
³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^6}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth

using reinforcing bars in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +40°C.

Droporty	Cumbal	Unit	Anchor Size					
Property	Symbol		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
Nominal Anchor Diameter	d	mm	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{\scriptscriptstyleRk}$	N/mm ²	8.50	8.50	6.50	6.50	4.50	4.50
Effective Embedment Depth	h _{ef}	mm	200	240	320	400	500	640
Characteristic Load (Combined Concrete Cone and Pullout Failure)	$N^0_{Rk,p}$	kN	53.41	76.91	104.55	163.36	176.71	289.53
Partial Safety Factor	γмс	-	1.80	2.10	2.10	2.10	2.10	2.10
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	400	480	640	800	1000	1280
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	200	240	320	400	500	640
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	213	255	298	372	387	496
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	106	128	149	186	194	248

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Reduction factors for close edge: Combined concrete cone and pullout failure

				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	100	0.95					
	106	N/R					
	110						
	120		0.95				
	128		N/R				
	130						
	140						
	149						
E	150						
Close Edge Distance, C (mm)	160			N/R			
Ö	170						
ce	180						
tar	186						
Dis	190						
ge	194						
Э́	200				N/R		
Se	210						
8	220						
	230						
	240						
	248						
	250					N/R	
	260						
	270						
	280						
	290						
	300						
	310						
	320	nly applicat					N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a single anchor with a single close edge. Tabulated values

COITIBII	ied cor	crete c	one an			=	
				Ancho	r Size		
		Ø10mm	Ø12mm	Ø16mm	Ø20mm	Ø25mm	Ø32mm
	100	0.79					
	120	0.83	0.79				
	140	0.87	0.82				
	160	0.91	0.85	0.82			
	180	0.94	0.88	0.85			
Ē	200	0.98	0.92	0.88	0.82		
E	213	N/R	0.94	0.89	0.83		
Anchor Spacing Distance, S (mm)	225		0.95	0.91	0.84		
၂၂၁	250		0.99	0.94	0.87	0.87	
itar	255		N/R	0.95	0.88	0.88	
Dis.	275			0.97	0.9	0.89	
ng	298			N/R	0.92	0.92	
aci.	300				0.92	0.92	
Sp	320				0.95	0.94	0.87
ō	325				0.95	0.94	0.87
힏	350				0.98	0.97	0.89
₹	372				N/R	0.99	0.91
	375					0.99	0.91
	387					N/R	0.92
	400						0.93
	425						0.95
	450						0.97
	475						0.98
	496						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and rabilitated values are thinly applicable to instances where commissioned control control and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Characteristic edge distance for splitting failure assumes h/h_{ef} = 2.0.

³ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
⁴ Tabulated values are valid for temperture range -40°C to +40°C (Max LTT = +24°C; Max STT = +40°C).

⁶ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product. ⁶ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{7.} The compressive strength of the concrete (f_{ckcube}) is assumed to be 25 N/mm² for C20/25 concrete.
8. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

must not be used if multiple close edges exist.

3 Anchors with geometry different to that defined in the above table must be considered

separately and the tabulated values must not be used.

Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure

 $^{^{6}}$. Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

² Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and

[&]quot;S_{cr.Np}" but without close edge considerations.
^a Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

Interpolation is allowed.

⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{^{6}}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Using TSIRCO-RES 341G with Post-installed

Rebar Connections Installation parameters

Re	ebar		Cleaning	Min.	Min.	Max.
Diameter (mm)	f _{y,k} (N/mm²)	Drill Hole (mm)	Brush* (mm)	Anchorage Length (mm)	Lap/Splice Length (mm)	Embedment Depth (mm)
8	500	12	S12/13HF	170	300	400
10	500	14	S14/15HF	212	300	500
12	500	16	S18HF	255	300	600
14	500	18	S22HF	298	315	700
16	500	20	S22HF	340	360	800
20	500	25	S27HF	425	450	1000
25	500	32	S35HF	532	563	1000
28	500	35	S38HF	595	630	1000
32	500	40	S43HF	681	720	1000

Design bond strength values

Design values of the ultimate bond resistance f_{bd} in N/mm² for rotary hammer drilling and compressed air drilling for good bond conditions.

good bond	ood bond conditions.											
Rebar Ø					Concrete Class	3						
(mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8												
10					3.0	3.4	3.7	3.7				
12		1.6 2.0		2.7								
14												
16	1.6		2.3		3.0			3.7	4.0			
20								4.0				
25								4.0				
28								3.	7			
32					2.7		3	.0				

^{*}Tabulated values for f_{bd} are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values for f_{bd} by 0.7

1

Product Data Sheet

Important Notes

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.